1,368 research outputs found

    Family Law

    Get PDF

    Family Law

    Get PDF

    Family Law

    Get PDF

    A simple parameter-free one-center model potential for an effective one-electron description of molecular hydrogen

    Full text link
    For the description of an H2 molecule an effective one-electron model potential is proposed which is fully determined by the exact ionization potential of the H2 molecule. In order to test the model potential and examine its properties it is employed to determine excitation energies, transition moments, and oscillator strengths in a range of the internuclear distances, 0.8 < R < 2.5 a.u. In addition, it is used as a description of an H2 target in calculations of the cross sections for photoionization and for partial excitation in collisions with singly-charged ions. The comparison of the results obtained with the model potential with literature data for H2 molecules yields a good agreement and encourages therefore an extended usage of the potential in various other applications or in order to consider the importance of two-electron and anisotropy effects.Comment: 8 pages, 6 figure

    Equations of state of elements based on the generalized Fermi-Thomas theory

    Get PDF
    The Fermi-Thomas model has been used to derive the equation of state of matter at high pressures and at various temperatures. Calculations have been carried out both without and with the exchange terms. Discussion of similarity transformations lead to the virial theorem and to correlation of solutions for different Z values

    Space-based geoengineering: challenges and requirements

    Get PDF
    The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures

    Functional strengthening through synaptic scaling upon connectivity disruption in neuronal cultures

    Get PDF
    An elusive phenomenon in network neuroscience is the extent of neuronal activity remodeling upon damage. Here, we investigate the action of gradual synaptic blockade on the effective connectivity in cortical networks in vitro. We use two neuronal cultures configurations—one formed by about 130 neuronal aggregates and another one formed by about 600 individual neurons—and monitor their spontaneous activity upon progressive weakening of excitatory connectivity. We report that the effective connectivity in all cultures exhibits a first phase of transient strengthening followed by a second phase of steady deterioration. We quantify these phases by measuring GEFF, the global efficiency in processing network information. We term hyperefficiency the sudden strengthening of GEFF upon network deterioration, which increases by 20–50% depending on culture type. Relying on numerical simulations we reveal the role of synaptic scaling, an activity–dependent mechanism for synaptic plasticity, in counteracting the perturbative action, neatly reproducing the observed hyperefficiency. Our results demonstrate the importance of synaptic scaling as resilience mechanism. Author Summary Neuronal circuits exhibit homeostatic plasticity mechanisms to cope with perturbations or damage. A central mechanism is ‘synaptic scaling,’ a self-organized response in which the strength of neurons’ excitatory synapses is adjusted to compensate for activity variations. Here we present experiments in which the excitatory connectivity of in vitro cortical networks is progressively weakened through chemical action. The spontaneous activity and effective connectivity of the whole network is monitored as degradation progresses, and the capacity of the network for broad information communication is quantified through the global efficiency. We observed that the network responded to the perturbation by strengthening the effective connectivity, reaching a hyperefficient state for moderate perturbations. The study proves the importance of ‘synaptic scaling’ as a driver for functional reorganization and network-wide resilience
    • 

    corecore